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FREQUENCY AND BUCKLING EIGENVALUES OF
ANISOTROPIC CYLINDERS SUBJECTED TO
NONUNIFORM LATERAL PRESTRESS

JosepH PADpOVANT

Mechanical Engineering, University of Akron, 302 E Buchtel Avenue, Akron. Ohio 44304

Abstract—Solutions are developed herein for the evaluation of frequency and stability eigenvalues of macro-
scopically fully anisotropic circular cylindrical shells subjected to nonuniform lateral prestress. Included in the
analysis is the presence of torsional prestress. The results obtained are applicable to any type of prestress which
satisfy Dirichlet’s conditions for Fourier series. Furthermore, in the manner of Kalnins [3], using the procedure
outlined herein, similar results could be obtained for general anisotropic shells of revolution.

INTRODUCTION

IN RECENT years with the increased usage of composite materials in structures, an under-
standing of the effects of anisotropy on shell characteristics is of increased importance.
In this respect, although recent analyses [1-4] have been made on the lateral stability of
cylindrical [1, 2, 4] and general shells of revolution [3], to date, these have been restricted
solely to orthotropic constitutive equations. This paper develops solutions for obtaining
the stability and frequency eigenvalues of macroscopically anisotropic circular cylindrical
shells subjected to nonuniform lateral prestress. The results obtained are applicable to any
type of prestress which can be expanded in Fourier series. To extend the scope of the present
analysis, torsional and “‘moderate’ axial prestresses are also included in the development.
As the solutions derived herein are general, setting the anisotropic elastic compliances to
zero yields the results of previous investigators [1, 2, 4] as special cases.

SHELL GEOMETRY

The position of a point of a circular cylindrical shell is given by 6 the circumferential
distance, x the axial distance and z the coordinate normal to the middle surface. For the
present study, R is the radius of the cylinder measured from the axis of rotation to the
middle surface and L is the length of the shell. The displacement of the middle surface in the
circumferential, axial and outward radial directions are denoted by u, v and w respectively.

EQUATIONS

The present analysis is based on Flugge [5] shell theory with Hoppmann [6, 7] type
anisotropic constitutive relations being used to derive the shell stability equations of
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motion. For completeness the shell constitutive relations are given by
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with g, ... being the usual Flugge [5] shell strains, and h,,, i, being the effective inplane and
bending shell thicknesses. Using equations (1) the shell stability equations of motions are
Ayl oy F 0ol g+ A3 gg -+ A0 ot As5U g T Agl g+ W dgW g+ doW ggr T U1 oW 10

U)W gt AW age— PR, = Loyfu,v,w, .., x, 0,60 =0 (3a)
bth syt bt ggF b3t g+ Bav o+ D5V g+ bl g+ bW o+ DgW ggg + BoW cgg +D10W 4xp

+by Wb we—pR*hw, = Lyfuv,....x,0,t) =0 (3b)
C1¥ e T CoU ggp 7+ C3ld gy + Call gy T CsU o T Coll g Col L F CsT g+ Col ipp+ Chg¥ ¢

TV CraW e T C13W 0000+ C1aW poxx T C15W gaax T CroW s T C17W

+CygW gt CroW yg+ CooW+ PR hw = Ly, ... x,0.1) = 0 {30)

where h is the effective shell thickness associated with the inertia terms, with a,.a,... ..
ay5,by by, bandey, 0, 05,00, ¢y defined in Appendix 1. The membrane prestresses
P, (axial), P, (lateral) and T (torque) enter equations (3a)(3c) through the definitions given
fora;, b ,¢;i=1.2,...,12.1=1,2.3.....20.

SOLUTION

In physical situations where the lateral pressure P, is not uniform, equations (3} arc
partials with variable coefficients. For this case the usual Fourier decomposition [8, 9] in ¢/
and exponential substitutions [10] in x are not directly applicable. In the early 1960’s
Almroth [1] obtained an approximate solution for the case of buckling of isotropic cylinders
due to nonuniform lateral pressure loads. Using the Rayleigh—Ritz procedure he expanded
the displacement components in trigonometric series and obtained a solution for freely
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supported cylindrical shells with loadings of the type
P.oc Pyl +¢cos 8). (4)

An alternate solution procedure was used by Hoff [2], Kempner et al. [11], Kalnins [3]
and Samuelson [4] for their respective studies. This method consists of expanding the
displacement components into Fourier cosine and sine series. These infinite series are
substituted into the governing differential equations. The resulting oo set of equations is then
truncated and solved for the required information. The preceding method of solution is
not directly applicable since the typical solution characterized by the usual Fourier
decomposition procedure cannot satisfy the present governing differential equations.
This is due to the presence of the anisotropic compliances (E'% ", EY%) and torque prestress
T. For anisotropic cylinders with uniform prestresses, equations (3a}-(3c) can be reduced
to one of the canonical forms with the aid of appropriate transformations. Although such
transformations exist, the associated change in the domain of definition distorts the
bounding surfaces of the cylinder. Therefore to circumvent these difficulties, the procedure
discussed by Padovan [12] will be used to construct a solution.

To simplify the present discussion P(x, #) is expanded in Fourier series, i.c.

P(f) = i} [£,(x) cos 0+ I (x) sin y6] (5)

y=

where convergence is assured for loadings which satisfy Dirichlet’s conditions. Now
applying the usual finite Fourier exponential transform to equations (3), assuming that

Y =3 |, wehave

. Ly, v,w,...,x,0,t)
f L(u,v,w,...,x,0,0) | e ™M dh -
0 Ly, v,w,...,x,0,1)
ay T{u o} +ay T {u g} + RESk+k, )T {t go} + a2 T{v .}
+asT{vy}+agT{vge} +REQKT{w } +asT{w,}

+ GQT{W,é?Ox} + alOT{W,ﬂxx} + al 1 T{W,xxx}
+a;,T{W gg9} —pR*WT {1} — RR Y, [T{E(x)(uge—w ) cos 70}
y=0
+ T{T(x)(u gg—w ) sin y6}] = L (u,, ug, ..., x, M, t) = 0, {6a)
bl T{u,xx} + bZ T{u,ee} + b3 T{“,&x} + b4T{v,xx}
+RKERIT{v g} +bsT{v .} +b; T{W .0} +bsg T{W g5}
+boT{Wgge} +b1oT{W grr} + by T{w } +[REDK + k,)
—ESk,T{w o} —pR*hT {1} — PR ¥, [T{{,(x)(v,99+W ) cos y0}
0

y=

+ T{T (x)(v gy + W g) sin y6}] = L,(u,, us,...,x, M, 1) = 0. (6b)



1452 JosepH PADOVAN

f 1 T N
C1 T U e+ T{ggg) +¢3 T {u,ﬂxx} s Tiu go. |
O = o oy
+ RE(l Z)kT{ux} +C()T{u.0} +c51 {U‘xxx)) +Cy 1 ; U.Ot)x}
) I . [¢] i
+(9T1b.xx9} +(10T{U,x} +RE(22)T{UH: r-(112T‘iw.xxxxl')

, . T o S B
+ 13T {W gggaf +CaTE{W o] +¢151 W oo00xs T Ci6 T AW grxnt

e Tiw o} + (RE{zozjkp +ES k)T {w oo} + ¢, o T{W

\xxf
+CT{W}+pRZAT (W o} + BR Y [T{EAX) (1, — 0 g+ w gp) COS 30
y=0

+ T{E(x) (1, — g+ W go) sin 03] = Ly(u, 1y, ..., x, M, ) = 0. (6¢)
where j = \/(—1)and T{u},... denote

T{u} - u(x, M, 1)—jufx, M. 1)
T{ugl — Mlufx. M, 1)+ ju(x, M, )]
T{u g} — M [—ufx, M, t)+jufx, M, 1)]
T{u cos 0} > Hux, M=y, D +udx. M43, 60— jlue, M —y, ) +ulx, M+, )] (Ta)

with ufx, M +y,1), ux, M +y,1),... being finite cosine and sine transforms of wu(x, 0. t).
v(x, 0, t) and w(x, 0, 1) respectively. The functional dependence of u(x, M +y.1).... with
respect to M and y is given by:

fudx, My, ) u(x, M +7y,1) e | ul(x, 8, 1)
vx, Mty ) vdx,. Mty,1) | = v(x, 0,1) ) (cos (M £v)0,sin(M+7)6)df. (7b)
w(x, M 7. 1), wylx, M £y, 1) wix, 8, 1)/

In the manner of Padovan [12], as the real and imaginary parts of the exponential transform
form linearly independent basis spaces, equations (7a) reduce to

T{u} - [ufx, M, 1), u(x, M, )]
T{ug} — Mlux, M, t), u(x, M, 1)]
T{u gt — M*[~ulx, M, 1), u(x, M, 1)]
T{ucos y0} — 3{ulx, M=y, 0+ulx, M+, 0), —ufx. M=y 0 —ufx. M+3.0]  (7¢)

With the new definitions of (7c), equations (6a)-(6¢) constitute two coupled infinite sets
of ordinary differential equations, both sets having as dependent variables u(x, M, 1),
u(x, M+v,t), udx, M, 1), u(x, M +7,1),..., wlx, M +v,1). Setting the elastic compliances
E%Y and ESSY to zero reduces equations (6) into two independent subsets with dependent
variables u(x, M, 1), u{x, M £y, 1), v{x, M, t}), v(x, M +v,1), wlx, M, 1), wlx, M +7,1) and
ufx, M, 1), ..., wlx, M+, 1), respectively. These resultant equations are applicable to the
usual orthotropic and isotropic cases.
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To obtain the required frequency eigenvalue relations from equations (6), we assume
as usual that

{u(x, 8, t), v(x, 0, 1), w(x, 8, 1)} o {U(x, B), V(x, 8), W(x, 8)} e’". ®)

Substituting (8) into (6) yields the frequency relations. The general solution of these relations
for the stability criteria and frequency eigenvalues of anisotropic cylinders under arbitrary
P{x, 6) and boundary conditions presents a large scale numerical problem. For the present
investigations two special cases are considered in detail. Before discussing these, it is noted
that recently Kalnins [3] developed a plausible numerical solution and resultant computer
program for linear stability problems in orthotropic shells of revolution. Included in his [ 3]
analysis was the capability of analyzing lateral bucking due to nonuniform prestresses.
Using the procedure outlined herein, Kalnins [3] results can be directly extended to
anisotropic shells of revolution.

ORTHOTROPIC AND ANISOTROPIC CYLINDERS
WITH ARBITRARY BOUNDARY CONDITIONS

A formal solution to equations (6a)-(6¢) for arbitrary boundary conditions can be
developed for the special class of functions Pr(6). For this case it is noted that as usual

(Udx, M), Ufx, M),.. ) c (U M), U(M),...)e*" )

where here 4 is an unknown. Using such a solution form, the frequency and buckling
eigenvalues may be obtained in a manner similar to that used by Forsberg [10]. For the
present equations, substituting (9) into (6) yields an cc matrix equation of the form

{24: A4—i'1‘}‘/’ = DA =0 (10)

where 4(F;,w,...)i =0,1,..., 4 are infinite matrices and the transpose of ¢ is given by
(UL0), W(0), U1), V(D),..) =y (11)

Inits present form, since A, is singular, the pencil of equation (10) is an irregular polynomial
matrix. Noting that A, is nonsingular, D(4) can be transformed into a regular polynomial
matrix. This is done through the transformation

1
V=2l (12
where here it is assumed that A # 0. Thus we have that
4
{ > Aiki}\y = DWW =0 (13)
i=0
where
-1 14
- l' ( )
To obtain a solution to (13), 4,;i=0,1,...,4 are truncated to finite size. Even in its

truncated form a direct solution to (13) is quite difficult. To alleviate this situation, a basic
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property of polynomial matrices will be used. That is. since the pencil D(L) is a regular
polynomial matrix, then equation {13) implies and is implied by the partitioned matrix
equation

{ 00 0 A, L0 R Ut B

v

0 0 4, A 0 -4, -4, 0 D
4 3 At 4 R ) \l’ } -0 (15)

0 A4, 4, 4, Ay -4y A, 0 W

A, A, A, A, Yoo 0 0 Al

or more simply
{Roh+ R}y = 0. {16}
Since A, is nonsingular, (16} can be written as
'R 'R+ [kt = 0. (1

Equation (17) denotes the typically occuring linear eigenvalue problem.
To implement the procedure discussed by Forsberg [10] the transformed boundary
conditions at x = 0, L are required. In general, the shell b.c. at x = 0, L are given by

o+ k=0
wo_ 1w
Oy = RO +kgt =0

|
1 1 1
o)+~ (ohl g+ o) +how = 0

R
oy kgw =0

where here k., kq. k. and k4, denote spring constants at the shell edges. Applying the trans-
form discussed earlier we have

o +k U, =0
{O) I (1) 7
ng@ - ”}iogxﬂ + k() % =0
{19}

M
(1) i (D)
O-cx.xi R(Gsex
s c

+og)+k W, =0

M W —
Oex +Axew&__‘x =0

In the manner of Forsberg [10], the & of (17) may be obtained for assumed values of o
and/or P,. These are used to construct U {x. M), Ufx. M), ... ie

Ul M) = Y T (M)e™

i

Vix M) = 3 V(M) (20)
Y ;7m 1 s

Wix, M) = Y W(M)e™
5 i=1 $



Frequency and buckling eigenvalues of anisotropic cylinders subjected to nonuniform lateral prestress 1455

where ¢ is dependent on the truncated size of (13). From this point, the usual procedure
follows [10].

In general, the matrix R; 'R, is unbanded and non-Hermitian. For the special case of
loadings of the form

P(6) = P, {1 + A ) P,cos y@}

y=0
P, <1,A«l (21
Ry 'R, is well conditioned since the diagonal band, consisting of y = 0 terms, is dominant.
Furthermore it can be shown that the terms corresponding to the critical buckling mode
of the uniform case are predominant. Therefore the 4 and P, associated with the uniform
case can be used as starting values of the iteration procedure.

As the magnitude of A in equation (21) increases, the importance of the terms associated
with y > 01is amplified. The resultant effect is an increase in the size of R; 'R, required for
adequate convergence. This is particularly true for slowly convergent Fourier series
representing P,(0).

For the special case of uniform external pressure, (10) reduces to a finite matrix equation,
in which, y is given by

V' =U. V. W, U, V. W) (22)
The form of equation (10) can be further simplified by observing that making the appropriate
additions and subtractions we have

s AR, 0 .
Y[ PRRTRR A =D =0 (23)
i=0 0 A(l+3.J+3)
where
¢ = (U ~jU,, V=iV, W=jW,, U +jU,, V. +jV,, W.+jW) (24)
and (AR, A@y3,4331,J=1,23;i=0,1,...,4) are complex third order square
matrices.

Due to the form of the pencil of (23) it is clearly seen that

det{ Ai (AQ ,)]/li} =0 (25a)
det{D()} = { (4
det{i;) [Aﬁ?ﬂ,,ﬂ)]).'} = 0. (25b)
Expanding equations (25) yields the required relations for 4, that is
DA% +jDyA" +D3A° +jD,A° + DsA* +jDgA> + D, A2 +jDgA+ Dy = 0 (26)
where (D;,i = 1,2,...,9) are real quantities. Setting the anisotropic elastic compliances

E%" to zero, reduces (26) to its usual form for orthotropic and isotropic cylinders, that is,

™+

[Dyi4,4°7 %] = 0. (27)

i=0

It



1456 JOSEPH PADOVAN

As (26) is complex, 4 can take on the following values
bi = [Fig, Firnds = [FAg +itn] (28)

where /z; and 4, are the real and imaginary parts of 4. With these values of 4, equations (20}
can easily be constructed and the usual procedure of evaluating the buckling and frequency
eigenvalues follows.

FINITE FREELY SUPPORTED ORTHOTROPIC
AND INFINITE ANISOTROPIC CYLINDERS

For finite freely supported orthotropic and infinite anisotropic cylinders a formal
solution can be obtained for even or odd P,(6). This is achieved by applying the following
Fourier transformation to equations (3a)}3¢) i.e.

b e | Filx.0.8,M) 0 0 1 Liu,....0
f 0 Fy(x. 0, B, M) 0 J Lo(u,....r)| dodx —
Omero 0 0 Foe, 0, 6. M) Ly, 0)

“alﬁz[ufc(»g3 M}’ (jss(ﬁ5 M)]+a2ﬂM[USS(ﬂ9 M}a - brcr(ﬁ’ M):I
+RE33[k+kp]fw2[ - Ucc(ﬁa M}* Uss(ﬁa M)] +o.
—ay , MPIW (B, M), W, (B, M)]+ pR*ho*[U B, M), Uy(B, M)] ... = 0

where

Fi(x, 8, 8, M) = (cos M0 cos fix, sin M8 sin fix)

Fy(x, 8, B, M) = (sin M6 sin x. cos M8 cos px)

Fi(x, 8, 8, M) = (cos M@ sin Six. sin M6 cos fix)
with the first and second subscripts of u, v and w denoting the x and 8 transform types,
respectively. From the nature of the x-transform, equations (29) apply to both finite freely
supported orthotropic and <o anisotropic cylinders, where f is treated either as a discreet
(Nn/L,N =0,1,2,...) or continuous variable, respectively.

With the successive applications of these transforms, the shell displacement stability

equations have been mapped into an infinite set of linear algebraic equations. To obtain the

required equations for the case of uniform external pressures, {, and I', are set to zero for ali
y > 0. This yiclds

[H(I.J).}‘//‘*‘Po{ﬂ(l,n]l}’“szthU]*]f =0 (30)

where [H; ;,]and [H; ;] are defined in Appendix 2, [1] is the usual identity matrix and the
transpose of i is given by

W= U, Vg Woe, Uy, Vi, W) (3h
In matrix form equations (29) are written as

(B, =0 (32)
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where the co matrix pencil [Z] and the transpose of its associated latent vector are
[E] = [H(I,J)]+P0[A(I,.I)+H(1,J)]+Q[I] (33)
U = {(UedB,0), ..., W(B,O))s .., (Uc B k), ..., We(B K, -} (34)

with 4 ; and Q being defined in Appendix 3.

The question of convergence of equations (32) to the required solution cannot be
answered in general for arbitrary functions Pr(f). For this reason a criterion will be given
from which convergence can be ascertained for a particular given Pr(f). From the previous
discussion it is easily seen that the problem of convergence of the infinite set (32) reduces to
the requirements for the convergence of an infinite determinant. To assure convergence of
the det. [Z] a sufficient condition is the absolute convergence of the infinite series

ed] 20

T Y ay < o0 (35)

i=1j=1

where o;; are the elements of [E]. Although this criterion is over restrictive, it is adequate
for the present analysis. From the nature of (35) it is noted that point-wise equivalence
throughout the whole domain of  is not required of equation (5) for convergence of P,
to significant decimal accuracy.

Since equation (32) has an infinite pencil, in order to obtain a solution, [E] is truncated
to finite size. From the form of [E] it is clearly seen that the truncated matrix [A4; ;] is
nonsingular, thus the usual stability and frequency eigenvalue problems can easily be
obtained. These are given by

1
{Fo [I] + [H(I,J)] - 1[14(1,1) + H(I,J)]} ‘j’ =0 (36)
and
{QUI+[H;pl+PolAg py+H; )W =0 (37)
where [H; ;17 ' is
[ 17! 0
[Hopl ™' = I (38)
0 -

For orthotropic cylinders the foregoing solution can be extended to include loadings of
the form P(x, 8), such that

P(x,0) = i i {,, cos y0} cos X

X
a=0y=0 L

(39)
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Under such loadings, (29) remains the same with the exception that terms associated with
Pr(x, 0) are transformed as

! 2
ff wcos« cosy(?cosﬂxcosM@dexw {—U;@&%H tc(;‘fﬂx M%*
0 ¢0 .

[, o) ]? n N e om P | n
i 5‘1" Ucc(ﬁ*‘az»M*'r)“Hﬁ*F‘Z” L’a(ﬁ*‘fst“"f‘}

- 2 L p2n
- (ﬁ—%z” U“(ﬁ—af«,M—y)},ff u‘xxcosgt%)fcosyﬂcosﬁxcosM9d0dx-~~»
k.. ~ 0 v

r 2
{— ﬁ+°;] U“(m Mw) [5«%’—‘] Ucc(ﬁ%fiMw)

Cam oan}? an
Y U Myl —| g 2" LV

B e R s L ] "

where the functional dependence of U (B+ux, M +7),.. .. with respect to i, M.z and v is
given by

L

Uclfto, Mty) = f (“ cos(f j:oc)%f cos(M +7)6u, 4 d6 dx

G Yo

L 27
Wpsa M = | | sin(ﬂia)%cosw £ 40 dx
G v

(41)

Since for the orthotropic case, E{%") = 0, equations {29) uncouple and therefore only the
23

first set consisting of dependent variables U, V,, and W,, need be solved.

DISCUSSION AND NUMERICAL EXAMPLES

With the aid of the exponential Fourier transform, solutions to nonuniformly prestressed
macroscopically anisotropic cylinders have been developed herein. As mentioned earlier,
the procedure outlined by equations (6) and (7) can, in a straight manner, be applied to
general shells of revolution to evaluate buckling and frequency eigenvalues. Furthermore
the solutions can also be extended to incorporate circumferential variations in shell
geometry and material properties.

Using polynomial matrices in conjunction with Forsberg’s method, an “‘exact’ solution
has been developed for the special case of anisotropic cylinders with lateral prestresses
of the form Pr(6). For such loadings, the solution is general, as all categories of shell boundary
conditions can be handled.

In general all the solutions developed herein have reduced to linear eigenvalue problems
of unbanded non-Hermitian matrices. Compared to the Hermitian case, the calculation of



Frequency and buckling eigenvalues of anisotropic cylinders subjected to nonuniform lateral prestress 1459

the eigenvalues of non-Hermitian matrices is less understood. A vital aspect of the calcula-
tion is the stability with respect to the growth of roundoff errors. For the present study the
pencils of the matrix equations are reduced to Hessenberg form. The eigenvalues of these
reduced matrices are subsequently obtained through the use of the numerically stable QR
transformation [15].

As an initial numerical example, the stability of freely supported cylinders with loadings
of the form Pr(0) = Py(l1 +¢ cos y0) are studied in detail. Figures 1-3 show the effects on
the shell stability of independently varying L/R, ¢ and y. As expected, the allowable P,
decreases monotonically with ¢ and/or L/R. Furthermore from Fig. 3 it is clearly seen that
for loadings of the type described above, the ¥ = 1 case causes the greatest effects on the
allowable P,.

Recently Kalnins [3] noted that even though a nonsymmetric prestress may have to be
expanded in a Fourier series with many terms, the components which affect the stability
of the whole will be those with wave numbers y = 0 and y = 1. This statement must be
qualified in the sense that it is true only for rapidly convergent series whose y = 0, 1 terms
predominant. For example Fig. 3 clearly shows that the effects of the y > 1 terms can be
significant. A further example is the stability of a freely supported cylinder with a band of
uniform lateral pressure defined by

Py, 0l < A
0LbLA<O<n;—-A>0> —x

P(0) = {

For A > 1 the y = 0 term is predominant. As A — 0 the importance of the higher order
series terms increase as clearly demonstrated in Fig. 4.

10-0
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R=10in.

#,7hs 2004 in.
o)
_LiR=10 £y
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£3:0

L/R=15
v E22 = 33.0X10%psi
£33 20

£33 = 11-55X105ps]

=
I-0 | | 4
05 10
€

FiG. 1. Buckling eigenvalues for various L/R ratios.
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A= 10in

hat by =0-04in.

£, = 33.0XI0%psi
£ .5 39X10° psi

£p52 0

204 Eye= 33-0Xi10% psi
£33 = 1-55XI0° psi
1001
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Fi1i. 2. Effects of ¢ on the buckling eigenvalue spectrum.

Examples of the effects of nonuniform lateral pressure on the frequency spectrum of
freely supported cylinders are shown in Figs. 5 and 6. Here the lowest frequency branch
decreases monotonically with ¢ and/or L/R. Extending the abcissa in Fig. 5 yields the
critical value of P,. Furthermore setting ¢ — 0 yields the frequency eigenvalues of the
uniform case. Figures 7 and 8 show the effects of anisotropy on the frequency spectrum of an

€20
15
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£ip = 9:9X10°psi
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3 ) [ 16 20

Fic. 3. Buckling eigenvalues for several L/R ratios and values of ¢.
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Fic. 4. Buckling eigenvalues of a cylinder with a band of lateral prestress in the axial direction,
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Fig. 6. Effects of ¢ on the frequency eigenvalue spectrum.
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FiG. 7. Effects of E, 3/E,5 on the lowest eigenvalue branch of an infinite cylinder.
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@
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p 20-733X1073b~sec/in?
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EI./ - EIJ
201 £, = £ =0-3375X10%psi

Ep = E3 =01X10° psi
Fa3 = 0118 X108 psi

| | | | L 1
-1-0 -05 ¢} 05 1-0 15

(£53/E)

FiG. 8. Effects of E,4/E, 3 on the lowest eigenvalue branch of an infinite cylinder.

infinite cylinder. As is clearly seen, the introduction of anisotropy doubles the number of
frequency branches for each value of M. From Fig. 7 it is seen that changes in the magnitude
of E, ; have lessening influence on the frequency as M increases.
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APPENDIX 1

a; = REQk—P, by = REk+ENk,

a; = 2[RKEY} ~T] bz = REQ[k+k,]— ESk,
ay = R(EQ(k+k,)—P] R[E‘m “”]&

ay = REQ[k+k,] b4 = REQ[k+k,)+2E{Rk, —

as = RK[E{}+EV] bs = RIKES)~ P]
ag = RKEY} be = 2[RKEQ) + EQJk, ~ T
ar = R[EGk+P)] b, = — Rk, E) - E{Jk,
ag = REQ[k+k,] by = RESk, — ESk,
ay = RES}k, by = Rk, E“” 3EWk, 7
ayg = —REQKk, bio = —RE“”kp wk,,[2EW+E§‘2’]
ay, = -—RE“”A by = REQk-2T
ayy = RE‘Z"z.’k by = ‘0’[k+k ]—Ek,— P.R
€y = ‘E(111)kh ¢y = R[EWk- P
¢; = EYk, ¢y = EVk,
¢y = ~Efk, ¢y = ESYk,
Cq == E(;S)kb cra = 2[EWk, +2Ek,
cs = R[EQk+P) ¢ys = 4EYk,
¢y = REQ[k+k,] ¢l = 4EK,
¢ = —2E{3k, cpr =B
¢y = —2E43k, ¢ys = REYk, + EY9k, + RP,
¢g = —3E{k, — E{Yk, ¢ro = REVIk,+ EQk,+2T
Cro = REQKk-2T 39 = REQk+k,]
P 1 L S
R’ P2V R) " 12R?
APPENDIX 2

ILJ=1223...
H(I.J) = f?a; + M?REQk +,)
H(LJ+1) = —fMas
H(I,J+2) = —BREOk+ BM?ay+ a,
H(I,J+3) = —fMa,
H(I,J +4) = fla,+M?a,
H(I,J+5) = —Mag+p*Ma, o+ M?3ay,
HU+1,J) = —Mb,
H(I+1,J+1) = fha+ M?RKES)
HI+1,J+2) = — M3bg— B*Mb, o+ MIRES(k +k,)— ESJk,]
H(I+1.J+3) = b, + M?b,
HU+1,J+4) = —fMb,
HUI+1,J45) = — %, —BM?by + b,
HU+2.7) = e, + fM?c, — BREOK
H(I+2,J+1)= —f*Mcy+ MRKEY)
HI+2,7+2) = s+ M s+ M?BPc  — BPci-+ cyo— MPRESK, + EYJk, ]
H(I+2,J+3) = —M3¢c,—B*Mcy+ Mc,
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H(I+2,J+4) = BPe,+ M cs~ficyo

HI+2,J+5) = fM3c,s—fMc, o+ Meyq
H(+3,)) = —fMa,

HI+3,J4+1) = fa,+M?a,

H(I+3,J+2) = Mag—[f*Ma, o +M?3a,,]

H(I+3,J+3) = p2a, + M*REQ[k +k,)

H(+3,J+4) = — Mas

H(I+3,J+5) = BREQk— fM?ay— fay,
H(I+4,J) = B%b, + M?b,

HUI+4,J+1) = —BMbq

H(I+4,J+2) = b, + BM2by— b,

H(I+4,J+4+3) = —Mb,

H(I+4,J +4) = B%b, + M2RKEY)

H(I +4,J +5) = Mbg+ B*Mb, o — M{RESk+ k) — E5Jk,]
H(I+5,J) = M3c,+ *Mcy— Mcg

H(I+5J4+1) = —B3,~BM?*cs+Bc,o

H(I+5,J42) = BM3c, s+ B*Mc,s—BMc,q

H(I+5,J+3) = — B3, —BM?*c, + BRE )k

H(I+5,J+4) = fMco— MREk

HI+5,J+5) = e+ Micy s+ f2MPe y— By + 30 — M [RESSk, + ESJk, ]

i=01,2;j=3,475

H(+iJ+j) =0
( 7 {523,4,5;;':0,1,2

H({,J) = —M?R H(I+3,J+3)= —M?R
HIJ+1)=0 H(I+3,J+4) =0
H(I,J+2) = ~BR H(I+3,J+35) = R
HI+1,/)=0 H{I+4,J+3) =0

HUI+1,J+1) = —M?R H(I+4,J+4) = —M?R
H(I+1,J+2) = —MR H(I +4,J+5) = MR
H(I+2,J)= ~BR H{+5,J+3)= R
H(I+2,J4+1) = —MR H(I+5,J+4) = MR
H(I+2,J+2) = ~M?R H(I+5,J+5 = —M*R.
APPENDIX 3
FA]
%
AL = | .
A,
Al-
A,
Al = .
.{"’6_d
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R & & _ )
Av=3 T Y A= (M= UldB M=) = (M43 U (. M +3)

S M=0y=1

—BW B M — )~ BW. (. M +)}L,

Av= 3 X E (PRl M )= Vel M)
(M =)W M =)~ (M)Wl M+,

Av= 3 T T (- BUB M=) BULB. M ) (M=ol M)
=M =)V (B M +7)— (M =y W (B, M —7)
~ (M +9)* W (B, M+ )},

A= T T 00U M=)~ M+ 1PUB, M4+ Wil M)
+BWLB M),

Ae= 3 B, T A= Vlp M=)~ Vol M+
(M =)W, M =)+ (M +9)WolB, M+,

Mo=5 B B (BB M=)+ BUB M-+ (M=) Velf M+1)
M 490V, M+ 9) (M~ W8 M )
— M+ W (B, M+1)}L,

Q = —pha’R™.

{Received 3 December 1970, revised 19 March 1971}

Aberpakr—1arobcs PellieHUs [Uis OTIpeaenieHs coBCTBeHNbIX 3HAMEHHI YACTOTH! H YCTORYMBOCTH MAKPOK-
OTFMHECKH FIOTTHO AHH3OTPOMHLIX KPYIJIBIX LIMIIMHADHYECKHUX 000/104eK, NOABEPKEHHBIX GEHCTBHIO HEOAHOPO-
HHOTO TOPH3OHTAMBHOTO TIPENBADHTENLHOIC Hanpskenus. B anamuse yuuThiBaeTCs TaKe HAIMYHE
KPY TH/IBHOTO TIPEABAPUTEBHOIO HampsokeHus. ITonyueHHbie PEIyAbTAThl NPUMEHMMBI K KaXKAOMY THUTTY
NpeaBapUTE/IbHOTO HATPSIKEHUs, KOTOPLI yanosnerBopser yciaosuam dupuxie s psaos ®ypee. dasee,
No/B3YACh CHocoBOM npencTapnésubiM B pabore Ha ocHoBe Meroaa KanbHMHCA, MOKHO IMONYMHTh
noaoBueie pesynbTaThl, A8 O6uwKX 0000UeK BPALUCHNMS.



